Domain adaptation methods reduce domain shift typically by learning domain-invariant features. Most existing methods are built on distribution matching, e.g., adversarial domain adaptation, which tends to corrupt feature discriminability. In this paper, we propose Discriminative Radial Domain Adaptation (DRDR) which bridges source and target domains via a shared radial structure. It's motivated by the observation that as the model is trained to be progressively discriminative, features of different categories expand outwards in different directions, forming a radial structure. We show that transferring such an inherently discriminative structure would enable to enhance feature transferability and discriminability simultaneously. Specifically, we represent each domain with a global anchor and each category a local anchor to form a radial structure and reduce domain shift via structure matching. It consists of two parts, namely isometric transformation to align the structure globally and local refinement to match each category. To enhance the discriminability of the structure, we further encourage samples to cluster close to the corresponding local anchors based on optimal-transport assignment. Extensively experimenting on multiple benchmarks, our method is shown to consistently outperforms state-of-the-art approaches on varied tasks, including the typical unsupervised domain adaptation, multi-source domain adaptation, domain-agnostic learning, and domain generalization.
translated by 谷歌翻译
Label noise is ubiquitous in various machine learning scenarios such as self-labeling with model predictions and erroneous data annotation. Many existing approaches are based on heuristics such as sample losses, which might not be flexible enough to achieve optimal solutions. Meta learning based methods address this issue by learning a data selection function, but can be hard to optimize. In light of these pros and cons, we propose Selection-Enhanced Noisy label Training (SENT) that does not rely on meta learning while having the flexibility of being data-driven. SENT transfers the noise distribution to a clean set and trains a model to distinguish noisy labels from clean ones using model-based features. Empirically, on a wide range of tasks including text classification and speech recognition, SENT improves performance over strong baselines under the settings of self-training and label corruption.
translated by 谷歌翻译
Our situated environment is full of uncertainty and highly dynamic, thus hindering the widespread adoption of machine-led Intelligent Decision-Making (IDM) in real world scenarios. This means IDM should have the capability of continuously learning new skills and efficiently generalizing across wider applications. IDM benefits from any new approaches and theoretical breakthroughs that exhibit Artificial General Intelligence (AGI) breaking the barriers between tasks and applications. Recent research has well-examined neural architecture, Transformer, as a backbone foundation model and its generalization to various tasks, including computer vision, natural language processing, and reinforcement learning. We therefore argue that a foundation decision model (FDM) can be established by formulating various decision-making tasks as a sequence decoding task using the Transformer architecture; this would be a promising solution to advance the applications of IDM in more complex real world tasks. In this paper, we elaborate on how a foundation decision model improves the efficiency and generalization of IDM. We also discuss potential applications of a FDM in multi-agent game AI, production scheduling, and robotics tasks. Finally, through a case study, we demonstrate our realization of the FDM, DigitalBrain (DB1) with 1.2 billion parameters, which achieves human-level performance over 453 tasks, including text generation, images caption, video games playing, robotic control, and traveling salesman problems. As a foundation decision model, DB1 would be a baby step towards more autonomous and efficient real world IDM applications.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Surgery is the only viable treatment for cataract patients with visual acuity (VA) impairment. Clinically, to assess the necessity of cataract surgery, accurately predicting postoperative VA before surgery by analyzing multi-view optical coherence tomography (OCT) images is crucially needed. Unfortunately, due to complicated fundus conditions, determining postoperative VA remains difficult for medical experts. Deep learning methods for this problem were developed in recent years. Although effective, these methods still face several issues, such as not efficiently exploring potential relations between multi-view OCT images, neglecting the key role of clinical prior knowledge (e.g., preoperative VA value), and using only regression-based metrics which are lacking reference. In this paper, we propose a novel Cross-token Transformer Network (CTT-Net) for postoperative VA prediction by analyzing both the multi-view OCT images and preoperative VA. To effectively fuse multi-view features of OCT images, we develop cross-token attention that could restrict redundant/unnecessary attention flow. Further, we utilize the preoperative VA value to provide more information for postoperative VA prediction and facilitate fusion between views. Moreover, we design an auxiliary classification loss to improve model performance and assess VA recovery more sufficiently, avoiding the limitation by only using the regression metrics. To evaluate CTT-Net, we build a multi-view OCT image dataset collected from our collaborative hospital. A set of extensive experiments validate the effectiveness of our model compared to existing methods in various metrics. Code is available at: https://github.com/wjh892521292/Cataract OCT.
translated by 谷歌翻译
Air pollution is a crucial issue affecting human health and livelihoods, as well as one of the barriers to economic and social growth. Forecasting air quality has become an increasingly important endeavor with significant social impacts, especially in emerging countries like China. In this paper, we present a novel Transformer architecture termed AirFormer to collectively predict nationwide air quality in China, with an unprecedented fine spatial granularity covering thousands of locations. AirFormer decouples the learning process into two stages -- 1) a bottom-up deterministic stage that contains two new types of self-attention mechanisms to efficiently learn spatio-temporal representations; 2) a top-down stochastic stage with latent variables to capture the intrinsic uncertainty of air quality data. We evaluate AirFormer with 4-year data from 1,085 stations in the Chinese Mainland. Compared to the state-of-the-art model, AirFormer reduces prediction errors by 5%~8% on 72-hour future predictions. Our source code is available at https://github.com/yoshall/airformer.
translated by 谷歌翻译
Accurate and safety-quantifiable localization is of great significance for safety-critical autonomous systems, such as unmanned ground vehicles (UGV) and unmanned aerial vehicles (UAV). The visual odometry-based method can provide accurate positioning in a short period but is subjected to drift over time. Moreover, the quantification of the safety of the localization solution (the error is bounded by a certain value) is still a challenge. To fill the gaps, this paper proposes a safety-quantifiable line feature-based visual localization method with a prior map. The visual-inertial odometry provides a high-frequency local pose estimation which serves as the initial guess for the visual localization. By obtaining a visual line feature pair association, a foot point-based constraint is proposed to construct the cost function between the 2D lines extracted from the real-time image and the 3D lines extracted from the high-precision prior 3D point cloud map. Moreover, a global navigation satellite systems (GNSS) receiver autonomous integrity monitoring (RAIM) inspired method is employed to quantify the safety of the derived localization solution. Among that, an outlier rejection (also well-known as fault detection and exclusion) strategy is employed via the weighted sum of squares residual with a Chi-squared probability distribution. A protection level (PL) scheme considering multiple outliers is derived and utilized to quantify the potential error bound of the localization solution in both position and rotation domains. The effectiveness of the proposed safety-quantifiable localization system is verified using the datasets collected in the UAV indoor and UGV outdoor environments.
translated by 谷歌翻译
对心理健康支持的需求不断增长,强调了对话代理在全球和中国作为人类支持者的重要性。这些代理可以增加可用性并降低心理健康支持的相对成本。提供的支持可以分为两种主要类型:认知和情感支持。关于该主题的现有工作主要集中在采用认知行为疗法(CBT)原理的构造药物上。此类代理根据预定义的模板和练习来运行,以提供认知支持。但是,使用此类药物对情绪支持的研究是有限的。此外,大多数建设的代理商都以英语运作,强调了在中国进行此类研究的重要性。在这项研究中,我们分析了表情符疾病在减少精神痛苦症状方面的有效性。 Emohaa是一种对话剂,通过基于CBT的练习和指导性对话提供认知支持。它还通过使用户能够发泄所需的情绪问题来支持情感上的支持。该研究包括134名参与者,分为三组:Emohaa(基于CBT),Emohaa(Full)和控制。实验结果表明,与对照组相比,使用Emohaa的参与者在精神困扰症状方面的改善得到了更大的改善。我们还发现,添加情感支持剂对这种改善,主要是抑郁和失眠有互补的影响。根据获得的结果和参与者对平台的满意,我们得出结论,Emohaa是减少精神困扰的实用和有效工具。
translated by 谷歌翻译
尽管自我监督的学习技术通常用于通过建模多种观点来从未标记的数据中挖掘隐性知识,但尚不清楚如何在复杂且不一致的环境中执行有效的表示学习。为此,我们提出了一种方法,特别是一致性和互补网络(Coconet),该方法利用了严格的全局视图一致性和局部跨视图互补性,以维护正则化,从而从多个视图中全面学习表示形式。在全球阶段,我们认为关键知识在观点之间隐含地共享,并增强编码器以从数据中捕获此类知识可以提高学习表示表示的可区分性。因此,保留多种观点的全球一致性可确保获得常识。 Coconet通过利用基于广义切成薄片的Wasserstein距离利用有效的差异度量测量来对齐视图的概率分布。最后,在本地阶段,我们提出了一个启发式互补性因素,该因素是跨观看歧视性知识的,它指导编码者不仅要学习视图的可辨别性,而且还学习跨视图互补信息。从理论上讲,我们提供了我们提出的椰子的基于信息理论的分析。从经验上讲,为了研究我们方法的改善,我们进行了足够的实验验证,这表明椰子的表现优于最先进的自我监督方法,这证明了这种隐含的一致性和互补性可以增强正则化的能力潜在表示的可区分性。
translated by 谷歌翻译
本文提出了一个简单而有效的框架蒙版,该框架将新提出的掩盖自distillation纳入对比的语言图像预处理中。掩盖自distillation的核心思想是将表示从完整的图像提取到蒙版图像预测的表示形式。这种合并享有两个重要的好处。首先,掩盖的自我验证目标是本地贴片表示学习,这与视觉对比度的互补,专注于与文本相关的表示。二,掩盖的自我验证也与视觉语言对比符合训练目标的视野对比是一致的。视觉编码器用于功能对齐,因此能够学习本地语义从该语言中获得间接监督。我们提供了专门设计的实验,并进行了全面的分析,以验证这两个好处。从经验上讲,我们表明,当MaskClip应用于各种具有挑战性的下游任务时,可以在线性探测,填充和零拍摄中取得卓越的结果,并在语言编码器的指导下取得了卓越的结果。
translated by 谷歌翻译